GS/0S - Information Manager Interface
Version 0.03

© 1987 Apple Computer, Inc.
All rights reserved.

000141

GS/0S Information Manager Interface External

DV TV W . veee et eetieeeneeensessssenaanssaennsrennsanssssrernresnnseensesnsssrenessnosnnsrnns 3
Memory Management and Virtual POINerso.ooovviiiiiiniiniiiciiinniniininnn 3
Allocation/Deallocation ROULIES .u.iueiiiiriieeetieeeneterineneencerernssnnesesnees 4
A110C S . eeniiiiiriraiiririir s se s aenrer e s e s e s s sanese 4
release_Seg.....ccovvieriiiniirnninnn. reebeeanreerreeticetaeetten s tsanasarrarnsines 4
13 =)) ST SO US U SRS U PR SURTURSSUUSSRIRPPUPOs 5
16763 'S5 41 1= ¢ + DO SOOI PRSP temtessesteseeneneennrraarranarens 5
UNLOCK _IMIBIM .t iiiiiieiieiirieeerierieraraesssseesrasnrssessnressrersrasasssssnsnsnns 5
Control Record Data StruCtres.....cccvereeereiriarenrcsiininessinieesasnnaesensenns. 0

Apple Confidential 2/11/88 PHE0142

GS/OS Information Manager Interface External
Overview

The GS/OS Information Manager (GIM) is a set of routines which manages
memory and commonly used data objects in the GS/OS environment. Most of the
memory required by GS/OS is managed by these routines. All calls are made
through the System Services Vector Table, and all should be called in full native (16
bit) mode. Each function ends with an 'RTL' so a corresponding ‘JSL' should be
done in the call.

Memory ‘Management and Virtual Pointers

Memory for GS/OS is, of course, obtained from the GS Memory Manager. Each
piece of GS/OS memory does not have its own handle; however. In order to
minimize the number of memory manager handles in the system (too many handles
can degrade system performance) Memory is obtained from the GS memory
manager in discrete chunks on an 'as needed’ basis and these chunks are further
subdivided. A subsegment is referred to with a 32 bit 'Virtual' Pointer which is
functionally equivalent to a GS Memory Manager 'handle’, though the
implementation is different.

A Virtual Pointer (VP) is dereferenced by a routine called Deref. All routines
which refer to chunks of GS/OS memory pass VPs (just as routines using memory
from the GS Memory Manager pass handles) to refer to the chunks. If a routine
needs to access the contents of a chunk (sometimes called a memory block’), it calls
the Deref routine with the VP as input and Deref returns a 4 byte pointer to the
contents of the block.

It is important to remember that a VP for a given block is constant up to the point
that that block is deallocated, but the physical address associated with it can change
any time the GS Memory Manager decides to compact memory. An FST can use
the Lock_Mem call to lock down GS/OS managed memory if it wishes to ensure
that an address associated with a VP will not change. Of course, such an FST should
do an Unlock_Mem call before returning to the System Call Manager so that the GS
Memory Manager is free to move GS/0OS segments as appropriate.

Apple Confidential 2/11/88 page 3
000143

GS/0S Information Manager Interface External
Allocation/Deallocation Routines

Access to the low level memory management routines are provided to the FST or
device driver (or for that matter, to the shell) by the calls alloc_seg, release_seg and
deref, reachable through the System Services Vector Table. These routines, along
with ones that lock/unlock GS/OS memory are described below.
alloc_seg(request_size) : vp

Function: Returns a Virtual Pointer to a memory block of the requested size
Inputs: Acc -> Requested Memory Block Size (bytes) (§7FF4 max)
Outputs: X <- VP to newly allocated block (low) -
Y <- VP to newly allocated block (high)
Errors: Carry <-1 Exception: 'Could Not Allocate Memory'
Notes: This call allocates a block of memory and returns a virtual pointer (0
it. If memory could not be obtained the carry is returned set.

release_seg(vp)

Function: Frees a block obtained with the allocate call

Inputs: X -> VP to block to free (low)
Y -> VP to block to free ¢high)

Outputs: None

Errors: Carry <- 1 Exception: 'Could Not Deallocate Memory’

Notes: This call frees a block of memory pointed to by the virtual pointer
passed. If for any reason the memory could not be returned the carry
is set.

Apple Confidential 2/11/88 page 4
000144

-

GS/0S Information Manager Interface External

deref(vp) : pointer

Function:

Inputs:
Outputs:

Errors:
Notes:

lock_mem()

_ Function:

Inputs:
Outputs:
Errors:
Notes:

Returns a pointer corresponding to the current location of the block
referenced by the virtual pointer.

. X -> VP of block to dereference (low)

Y -> VP to block to dereference (high)

X <- Pointer to dereferenced block (low)

Y <- Pointer to dereferenced block (high)

None

This call dereferences the virtual pointer passed. The 32 bit value
returned points to the first useable byte in the block.. Don't confuse
GIM dereferencing with that associated with the System Memory
Manager; they are two different things. A deref gives you a pointer
that is good until any system call is made that forces memory to move
around (any VCR/FCR/alloc_seg call). If you wish to ensure that a
pointer will not change you need to use the lock_mem and
unlock_mem calls.

Locks down GS/0S managed memory

None

None

None

All segments created with alloc_seg, alloc_ver, and alloc_fer are
locked down. It is expected that a call to unlock_mem will be done
before returning to the shell, so that unnecessary memory
fragmentation can be avoided.

unlock_mem()

Function: Unlocks GS/OS managed memory

Inputs: None

Qutputs: None

Errors: None

Notes: All segments created with alloc_seg, alloc_vcr, and alloc_fcr are
unlocked.

Apple Confidential 2/11/88 page 5

066145

GS/0S String (G-string)

!nur_nd String Format
$08 | $00 r H e kN L s$oo
I | }
string length string contents terminator
Apple Confidential 2/11/88 page 6

000146

GS/0OS Cache Manager ERS

version 0.03

080215

Revigion History

0.01 07/21/87 Initial release

0.02 08/19/87 a little updating and removed volume_id

0.03 08/31/87 published as internal and external copy, also added
a few more tidbits under implementation notes

Disclaimer

Information contained henceforth is preliminary. Specification and
implementation details of GS/OS caching is subject to change without
notice.

In i

The GS/0OS Cache Manager is a set of system level routines used to
implement general disk block caching under GS/OS. Briefly, caching is
defined here to be the process in which frequently accessed disk blocks
are kept in memory in an orderly fashion to facilitate speedy future access
to those disk blocks.

As with most caching implementations, the least recently used (LRU)
mechanism will be in effect. Caching under GS/OS will be a write through
cache. Thatis, when an FST issues a write call to the device driver, both
the block in the cache and the same block on the disk will have the same
contents. (Never will the block in the cache contain information more
recent than the same block on the disk.) Alse, the cache size is user
selectable through the control panel.

The cache black size is for all intents and purposes, unrestricted in
size. The GS/OS Cache Manager makes no assumptions about the size of
the block to be cached. Cache memory is obtained and released on a as
needed basis. If for example 32K is selected as the cache sizs, then this
amount is not directly allocated for specific use by the Cache Manager.
This differs from the Mac Cache Manager whers it deals only in 512 byte
nlocks and the cache memory is exclusive to the Cache Manager. (It's true,
| asked Bruff about this.)

Descripti f i

For each of the following calls, input and output is passed by GS/OS
direct page and full native mode is always assumed. Further, on input the
B and K registers are don't cares and on output the contents of these
registers are preserved. The D register must be set to GS/OS direct page.

GS/0S Cache Manager ERS page 2 August 31, 198,
Company Confidential — Internal and External Copy 00021
Copyright 1987 Apple Computer Inc. All Rights Reserved i8

The state of the.language card is a don't care, the caching routines does
not mess with the language card. Carry clear indicates no error, operation
complete, otherwise something went wrong.

INIT_CACHE

Before the GS/OS cache can be used, the Cache Manager must be
initialized. Initialization will reset the Cache Manager's own internal
variables, allocate some memory for it's own housekeeping and determine
the size of the user selectable cache. This call is only made by the System
Call Manager when GS/OS is booted or relocaded.

ADD_BLOCK

This call will try to add the specified block to the cache. If there is
not enough room left in the cache for the specified block, space will be
made available by deleting enough cached blocks for this. Blocks will be
deleted via LRU. ¢ = 0 means the block was cached. ¢ = 1 means something
went wrong and the block wasn't cached.

FIND_BLOCK

This call will traverse the bucket links and will try to find the _
specified cached block. ¢ = 0 means the block was found. ¢ = 1 means the
block wasn't found.

DELETE_BLOCK

This call will traverse the bucket links and will try to release the .
specified cached block. ¢ = 0 means the block was found and deleted. ¢ = 1
means something went wrong and the block may still be cached.

DELETE_VOLUME

This call will traverse the LRU links and release those cached blocks
belonging to the specified device. if the device number is 0 then this call
will release those cached blocks belonging to the specified FST. ¢ =0
means the block(s) or device(s) was deleted. ¢ = 1 means something went
- wrong and the block(s) or device(s) may stiil be cached.

GYY0S Cache Manager ERS pege 3 August 31, 1987
Company Confidentlal — Internal and External Copy .
Copyright 1987 Apple Computer inc. All Rights Reserved 000217

SHUTDOWN_CACHE

When the cache is no longer needed, GQUIT will issue this call to
shutdown the cachs. Shutdown involves releasing back to the system all
memory that was allocated to it. ¢ =0 means cache has been shutdown.
¢ = 1 means something went wrong, the cache may not be shutdown
completely. Also, the cache contents are undefined. This call is only
called by the System Call Manager.

CACHE_LOCK

This call although specified in the system service table is currently
not used at all. Ray Montagne and myseif will define this soon. Or we may
chuck this call if we can't justify it's existence.

Implementation Notes

At the time of this writing, the caching routines are residing in non
bank switched memory. If in the furture the caching routines are moved to
bank switched memory, then some GLU must be provided to switch in and
out the language cards.

Each cached block will have a header appended ta it. The cache header
looks like this:

c_lru_fwd gequ $0000 :vp to forward LRU vp link
c_lru_bwd gequ c_iru_fwd+4 vp to backward LRU vp link
c_bki_fwd gequ c_iru_bwd+4 ;vp to forward bucket vp link
c_bkt_bwd gequ c_bkt_fwd+4 'vp to backward bucket vp link
¢_blknum gequ C_bkt _bwd+2 :block number of cached block
c_blksize gequ c_blknum+4 ‘block size of cached block
c_fstnum gequ c_blksize+2 ‘FST number of cached block
c_devnum gequ ¢_fstnum+2 device number of cached block
c_priority gequ c¢_devnum+2 ;cache priority

c_cellsize gequ c_priority+2 :size of this cache cell
c_reserved gequ c¢_cellsize+2 ;reserved by Apple
¢_headerlen gequ c_reserved+4 length of cache header

¢c_cached _data gequ c_reserved+4 .offset to cached data block

The cache list is managed by two sets of doubly linked virtual pointers.
One set maintains the least recently used (LRU) order of cached data
blocks. The other set maintains these blocks after the block number has

GS/OS Cache Manager ERS , page 4 August 31, 19¢
Company Confidentlal - Internal and External Copy 0031 8
Copyright 1987 Apple Computer Inc. All Rights Reserved =

been hashed. Currently, the hash function will hash into 128 different
buckets. Each bucket contains those blocks that have the same hash value.
The hash value for a particular block will always be the same bucket.

For a description of what a virtual pointer is and what it looks like, see
the System Call Manager (or Global Information Manger) ERS for details.

The GS/OS cache is limited to the size determined by the user through a
battery ram location. There are cases however, where memory cannot be
abtained to add a block even though the Cache Manager's own internal
variables say there is room. In those cases, the cache will behave as
though the cache is full and LRU will be invoked to make room for the add

request.

GS/0S Cache Manager ERS page 5 August 31, 1887
Company Confidential — Internal and External Copy 000218
Copyright 1987 Apple Computer Inc. All Rights Reserved ~

06G229

GS/OS System Service Calls

External ERS Ver. 0.11a01

¢dd PRELIMINARY éd¢

- © Copyright by Apple Computer, Inc, 1987, 1988
All Rights Reserved

000221

GS/0S8 System Service Calls External ERS Version 0.11a01

Revision History

Date
07-09-1987
07-13-1987

07-13-1987
07-14-1987

cache_shutdn,

07-15-1987

07-17-1987

07-21-1987
get,

07-23-1987
08-18-1987

09-01-1987
09-02-1987
09-02-1987
09-08-1987
10-08-1987
12.22.1987
01-06-1988
01-08-1988
01-08-1988
01-21-1988
02-04-1988
2-24-1988

2-29-1988

Yarsion Whe
0.01 RBM
0.02 MSA
0.03 MSA
0:04 RIC
0.05 RBM
0.06 RIC
.07 MSA
0.08 MSA
0.09 RBM
0.10 MSA
0.11 MSA
0.12 I
0.13 . RBM
0.14 MSA
0.15 RBM
0.16 RBM
0.17 RBM
0.18 FAB
0.19 RBM
0.20 MSA
003303 RBM
004201 I

E . [Revision
Inital release with device dispaicher & clr_dev_arr.

Added descriptions of alloc_seg, release_seg, deref, alloc_ver, alloc_fcr,
release _ver, release_fer, find_ver, find_fer, rename_ver, rename_fer

Updated to reflect new VCR/FCR stucture. Added lock_mem, unlock_mem.
Added descriptions of cache_find_blk, cache_add_blk, cache_init,
cache_del_bik, and cache_del_vol.

Added inputs, outputs, errors and notes to device dispatcher & cir_dev_err.
Added cache_lock to system service dispaich table. Definition to be provided
by RIC ASAP,

Added description of cache _lock.

Added calls get_vecr, get_fer, and vector locations for rename, lock/unlock,
interchange the names get_fcr, find_fcr.

Changed call name clr_dev_emr 10 ¢ir_dev_error.

Changed address’ to match current GS/OS memory map.
Added call structure for SYS_DEATH.

Changed/shoriened and fixed memory management call descriptions
Added description of get_sys_gbuf.

Added description of sys_exit entry point.

Added MOVE_BLOCK routine.

Added CVT_0TO! and CVTI1TOO.

Added: RESERVED_01, RESERVED_02 and SIGNAL
Added: RESERVED _02 and SET_DISKSW
DELETED: CLR_DEV_ERROR

Changed MOVE_BLOCK to MOVE_INFO routine
Added: Set_sys_speed

Change to SWAP_OUT

Added: Supervisory driver dispatcher
Added: Post driver installation

Changed: Description of SYS_DEATH, REPLACE_80
Removed: FULL_ERROR and REPORT_FATAL, which are an internal calls.

éd € CONFIDENTIAL €66 Page 2
006222

GS/08S System Service Calls External ERS Version 0.11a01

6-2-1988 0.08201 RBM Added suppon for linked devices when maintaining device disk swirched
occurrence. See SET_DISK_SW (SO1FC90).

6-21-1988 0.10a01 RBM Added system service call S01FCBC for dynamic slot arbiwration.
7-28-1988 0.11a1 MSA Added description of GET_BOOT_PFX and SET_BOOT_PFX

d€& CONFIDENTIAL dé& Page 3
000223

GS/0OS System Service Calls External ERS Version (.11a01

About the System Service Calls
Access to several system service routines has been provided for File System Translators and
Device Drivers by GS/OS. Access to these routines is through a System Service Disparch

Table located in bank $01 from $FC0Q through SFCFF. A list of these system service
routines and their location within the System Service Dispatch Table is shown below:

DEV_DISPATCHER $01FC00
CACHE_FIND_BLK $01FC04
CACHE_ADD_BLK $01FCO08
CACHE_INIT $01FCOC
CACHE_SHUTDN $01FC10
CACHE_DEL_BLK $01FCl14
CACHE_DEL_VOL $01FC18
ALLOC_SEG $01FCIC
RELEASE_SEG $01FC20
ALLOC_VCR $01FC24
RELEASE_VCR SO1FC28
ALLOC_FCR $01FC2C
RELEASE_FCR $O1FC30
SWAP_OUT $01FC34
DEREF $01FC38
GET_SYS_GBUF $01FC3C
SYS_EXIT $01FC40.
SYS_DEATH $01FC44
FIND_VCR $01FC48
FIND_FCR $01FC4C
SET_SYS_SPEED $01FC50
CACHE_LOCK $01FC54
RENAME_VCR SO1FC58
RENAME_FCR $01FCSC
GET_VCR $01FCe60
GET_FCR $01FCo4
LOCK_MEM $01FC68
UNLOCK_MEM $01FC6C
MOVE_INFO $01FC70
CVI_0TO1 S01FC74
CVT_ITOO S01FC78
REPLACER0 $01FC7C
RESERVED_01 $01FC80
RESERVED_02 $01FC84
SIGNAL SO1FC88
RESERVED_03 $O1FC8C
SET_DISKSW S01FC90
RESERVED_04 $01FC94
RESERVED_05 $01FC98
RESERVED_06 $01FCOC
RESERVED_07 $01FCAO
SUP_DRVR_DISP $O01FCA4
INSTALL_DRIVER $01FCAS
GET_BOOT_PFX $01FCAC
SET_BOOT_PFX $01FCBO
Y BN AN Jop fese
dd¢ CONFIDENTIAL dé¢

060224

GS/0S System Service Calls External ERS Version 0.11a01

DYN_SLOT_ARBITER $01FCBC

RESERVED $01FCCO - $01FCFF

Descriptions of each of the system service routines follow:

¢éd¢ CONFIDENTIAL dd & Page 5
600225

GS/0S System Service Calls External ERS Version 0.11a01
DEV_DISPATCHER $O01FCO00

Function:

Drvr_Open

Function:

Inputs:
Outputs:
Errors:

This system service entry point provides access to the device dispaicher. The
device disparcher is responsible for maintenance of the device drivers and also
provides the mechanism for dispaiching to the device drivers. This system
service routine is unique in that one of several system services are provided
through this entry point. The actual service provided is specified by the input
parameters passed on GS/OS direct page. Services provided through this entry
point fall into two classes. Service may pertain to the device dispatcher itself or
a specific device driver. A list of the services provided by this entry point is
show below:

DEVICE DRIVER
DRVR_OPEN
DRVR_READ
DRVR_WRITE
DRVR_CLOSE
DRVR_STATUS

DRVR_CONTROL
DRVR_FLUSH

Brief descriptions of each of these services are provided in this document. For
more detailed information on these services see the Device Dispatcher ERS or
the Device Driver ERS.

This call is used to prepare a character device for conducting I/O rransactions.
This may include allocation of resources such as memory for buffers. Block
devices will take no action on this call and should return a ‘BADCMD’ error.
Prior to dispatching to the device, the device dispatcher will check that the DIB
for the device specified by the device number indicates that the device is a
character device.

GS/0S Direct Page

None

¢ = 0 means no error, the device driver was opened successfully.

¢ = 1 means an error condition occurred. The device could not be opened.
Possible errors include: '

$0020 DRYR_BAD_REQ
$0026 DRVR_NO_RESRC
$0027 DRVR_IO_ERR
$0028 DRVR_NO_DEV
$002F DRVR_OFF_LINE

An exception is that error code $0024 - DRVR_PRIOR_OPEN indicates that
the driver has already been opened. Normal I/O transactions may be requested
with no negative effect.

dé€€ CONFIDENTIAL éé ¢ Page 6
G226

GS/0S System Service Calls External ERS Version 0.11a01

Drvr_Read

Function:

Inputs:
QOutpauts:
Errors:

Drvr_Write

Function:

Inputs:
Outputs:
Errors:

This call is used to read data from either a character or block device. A
drvr_open call must have been issued to a character device prior to attempting
to read data from the device with this call. Block devices do not require (and in
fact do not support) a drvr_open call prior to attempting to read data from the
device. '
GS/0S Direct Page
GS/OS Direct Page and Buffer contents
¢ = 0 means no error, the device driver returned the requested data into the
buffer specified on GS/OS direct page.
¢ = 1 means an error condition occurred, the requested data was not returned.
Possible errors include: : =

$0020 DRVR_BAD_REQ

$0021 DRVR_BAD_PARM

30023 DRVR_NOT_OPEN (character device only)
$0027 DRVR_IO_ERR

$0028 DRVR_NO_DEV

$002C DRVYR_BAD_COUNT

£002D DRVR_BAD_BLOCK

$2EXX DRVR_DISK_SW

$002F DRYR_OFF_LINE

This call is used to write data to either a character or block device. A drvr_open
call must have been issued to a character device prior to attempting to write
data to the device with this call. Block devices do not require (and in fact do not
support) a drvr_open call prior to attempting to write data to the device.

GS/OS Direct Page

GS/0S Direct Page & Buffer contents

¢ = 0 means no error, the requested data was written to the device.

¢ = 1 means an error condition occurred, data was not written to the device.
Possible errors include:

$0020 DRVR_BAD_REQ
$0022 DRVYR_BAD_PARM
$0023 DRVR_NOT_OPEN (character device only)
$0027 DRVYR_IO_ERR
$0028 DRVR_NO_DEV
$002B DRVR_WR_PROT
$002C DRVR_BAD_COUNT
$£002D DRVR_BAD_BLOCK
$2EXX DRVYR_DISK_SW
$002F DRVR_OFF_LINE
dé€6 CONFIDENTIAL €€ ¢ Page 7

000227

GS/0S System Sefvice Calls External ERS _ Version 0.11a01
Drvr_Close

Function: This call is used to reset the driver to the pre-open state. This may include
releasing of resources such as memory for buffers. Block devices will take -
action on this call and should return a 'BADCMD' error. Prior to dispaiching to
the device, the device dispatcher will check that the DIB for the device specified
by the device number indicates that the device is 2 character device.

Inputs: GS/0S Direct Page
Outputs: None
Errors: ¢ = (means no error, the device driver was closed successfully.

¢ = 1 means an error condition occurred, the driver was not closed. Possible
errors include:

$0020 DRVR_BAD_REQ
$0027 DRVR_IO_ERR
$0028 DRVR_NO_DEV
$002F DRVR_OFF_LINE

Drvr_Status

Function: This call is used obtain specific status information pertaining to a device.

Inputs: GS/0S Direct Page
Outputs: GS/0S Direct Page
Errors: ¢ = 0 means no error, the requested status was returned successfully.

¢ = 1 means an error condition occurred, no status was rewrned. Possible
errors include:

$0020 DRVR_BAD_REQ
$0021 DRVR_BAD_CODE
$0022 DRVR_BAD_PARM
$0027 DRVR_IO_ERR
$0028 DRVYR_NO_DEV
$002B DRVR_WR_PROT
$2EXX ' DRVR_DISK_SW
S002F DRVR_OFF_LINE
Drvr_Control
Function: This call is used send specific control information or requests to a device.
Inputs: GS/OS Direct Page
Outputs: GS/0S Direct Page -
Errors: ¢ = 0 means no error, the control list was sent to the device successfully.

¢ = 1 means an error condition occurred, no control information was sent (o the
device. Possible errors include:

$0020 DRVR_BAD_REQ
$0021 DRVR_BAD_CODE
30022 DRVR_BAD_PARM
$0027 DRVR_IO_ERR
$0028 DRYR_NO_DEV
$002F DRVR_OFF_LINE
dédd CONFIDENTIAL ddé ¢ Page 8

0062283

GS/0S System Service Cails External ERS Version 0.11a01

Drvr_Flush

Function:

Inputs:
Outputs:
Errors:

This call is used to output any characters in a character driver's buffer in
preparation for purging a driver. Block devices do not support this call and will
return with no error. The device driver will check the DIB to make sure the
device is a character device prior to dispatching to the device driver.

GS/0S Direct Page

GS/0OS Direct Page

¢ = 0 means no error, any device driver maintained buffer was written to the
device.

¢ = 1 means an error condition occurred, any device driver maintained buffer may
contain data that was not written to the device. Possible errors include:

$0020 DRVR_BAD_REQ _
$0023 DRYR_NOT_OPEN (character device only)
$0027 DRVR_IO_ERR
$0028 DRVR_NO_DEVY
$002B DRVR_WR_PROT
$2EXX DRVR_DISK_SW
$002F DRVR_OFF_LINE
déd€ CONFIDENTIAL &€déd Page9

000229

GS/0S System Service Calls External ERS : Version 0.11a01

CACHE_FIND_BLK $01FC04

Function:

This routine will try to find the requested block in the cache. If it's found, i1l be
moved to the start of the LRU chain and a 4 byte pointer will be returned to the

start of the requested block. The bucket links will not be moved. One of two
possible :
searches may be specified for this call. Driver's cache block by device number
while an FST may cache a block by volume ID when a deferred session is in
process. A routine calling this system service routine must specify the type of
cached block that the search will operate on.
Inputs: GS/OS direct page
Carry Flag = 1 : search for deferred volume (FST's)
Carry Flag = 0 : search for block (Driver's)
Outputs: GS/0OS direct page
Errors: ¢ = 0 means no error, the block is in the cache
¢ = 1 means the block's not in the cache
Notes: Input and output is passed to this routine by GS/OS direct page and full narive
mode is always assumed.
CACHE_ADD BLK $01FCO8
Function: This routine will try to add the requested block into the cache. It's position
within the LRU and bucket chain will be at the start of the list. In the event there is
not enough room in the cache, the last recently used block(s) will be purged until
there is enough room for the requested block.
Inputs: GS8/0S direct page
Qutputs: GS/0S direct page
Errors: ¢ = 0 means no error, the block is cached
¢ = 1 means something screwed up, the block's not cached
Notes: Input and output is passed to this routine by GS/OS direct page and full narive
mode is always assumed.
CACHE_INIT $01FCOC
Function: This routine will try to initialize the cache. Memory as needed by the cache is
: obtained from the Mike Memory Manager. The size of the cache is determined
by looking at battery ram. Once this is read, changing the value in battery ram wiil
not change the size of the cache, unless a shutdown and init sequence occurs.
Inputs: GS/0S direct page
Outputs: GS/0S direct page
Errors: ¢ = 0 means no error, the cache has been initialized
¢ = 1 means something screwed up, the initialization failed
Notes: Input and output is passed to this routine by GS/OS direct page and full native
mode is always assumed.

déd¢ CONFIDENTIAL dé¢ Page 10
000230

GS/0S System Service Calls Externat ERS Version 0,11a01

CACHE_SHUTDN $01FC10
Function: This routine will ry to shutdown the cache by deleting each entry on at a time.
The LRU list will be used for deletion, the bucket lists will not be used nor updared.
The state of the cache is unknown if there's an error.
Inputs: GS/0OS direct page
Outputs: GS/0S direct page
Errors: ¢ =0 means no error, the cache has been shutdown
¢ = 1 means something screwed up, the cache is unreliable now
Notes: Input and output is passed to this routine by GS/OS direct page and full native
mode is always assumed.
CACHE_DEL_BLK - $01FCl4
Function: This routine will try to delete the requested block from the cache.
Inputs: GS/0S direct page
Outputs: GS/OS direct page
Errors: ¢ = 0 means no error, the block has been deleted from the cache
= | means something screwed up or the block's not in the cache
Notes: Input and output is passed to this routine by GS/OS direct page and full native
mode is always assumed.
CACHE_DEL_VOL $01FC18
Function: This routine will ry to delere all blocks belonging to the requested device
Aumber from the cache. If the device number = 0 then all blocks of all block devices of
the specified FST will be deleted.
Inputs: GS/0S direct page
Outputs: GS/0S direct page
Errors: ¢ = 0 means no error, the device's block(s) have been deleted from the cache
. ¢ =1 means something screwed up, the block(s) may still be in the cache
Notes: Input and output is passed to this routine by GS/OS direct page and full native
mode is always assumed.

dsdd CONFIDENTIAL édd Page !l
006231

GS/OS System Service Calls External ERS Version §.11a01

Memory Management Call Descriptions

For more detailed specifications of these calls, please the the GS/OS Information Manager
ERS.

ALLOC _SEG $01FC1C

alloc_seg(request_size) : vp -

Function: This routine returns a Virtual Pointer to a segment of the requesied size, If the
cary is set upon entry, the segment is filled with zeros (It should be clear if

zeroing the segment is unnecessary). If memory could not be obtained the carry
is returned set.

RELEASE_SEG $01FC20

release_seg(vp)

Function: This call frees a block of memory obtained with the allocate call pointed to by
the virtual pointer passed. If for any reason the memory could not be returned
the carry is returned set.

DEREF $01FC38
deref(vp) : pointer

Function: This call returns a pointer corresponding to the current location of the block
- referenced by the virtual pointer. The 32 bit value returned points to the first

useable byte in the block. Don't confuse GIM dereferencing with that
associated with the Systern Memory Manager; they are two different thin gs. A
deref gives you a pointer that is good until any system call is made that forces
memory to move around (e.g. any VCR/FCR/alloc_seg call). If you wish to
ensure that a pointer will not change you need to use the lock_mem and
unlock_mem calls.

LOCK_MEM $01FC68

lock_mem()

Function: This call causes all GS/OS managed memory segments created with alloc_seg,
alloc_ver, and alloc_fer to be locked down with respect to the GS memory
manager. It is expected that any routine calling lock_mem wil! also make a call
to unlock_mem; failure 10 do so could cause the system to run out of memory
prematurely,

dé€d€ CONFIDENTIAL é¢ ¢ Page 12
800232

GS/0S System Service Calls External ERS Version 0.11a01
UNLOCK_MEM $01FC6C

unlock_memq()

Function: All segments created with alloc_seg, alloc_ver, and alloc_fer are unlocked.

ALLOC_VCR $01FC24

alloc_vcr(pathname_string, size) : vp

Function: The routine allocates a Volume Control Record, links it into the VCR chain and
assigns it a YCR ID (This number is analogous to the FCR's reference

number). The size parameter must be at least SO00E bytes and may be larger
than this if the FST wishes te store it's own info stanting at byte SO0OE.

RELEASE VCR $01FC28

release_ver({ver_id)

Function: This routine deallocates a Volume Control Record and relinquishes the VCR ID.

FIND_VCR | $01FC48
find_vcr(vol _name or ver_id) : vp

Function: A search is done for the VCR whose ID or name are equal to that passed, and a
VP is remurned corresponding to the first VCR that maiches the specified
criteria.

RENAME VCR $01FC58

rename_ver(ver_id, pathname)

Function: The name of the VCR referenced is changed to the name specified in the X,Y
registers.

ALLOC_FCR $01FC2C

alloc_fer(size, file_name) : vp

Function: This call allocates a File Control Record and links it into the FCR chain. The
reference number is assigned and placed within the FCR.

RELEASE _FCR $01FC30

ddd CONFIDENTIAL dé ¢ Page 13
000233

GS/OS System Service Cails External ERS Version 0.11a01

FIND_FCR ‘ $01FC4C

find_fer(file_name or ref_num) : vp

Function: A scarch is done for the FCR whose ref_num or name are equal to that passed,
and a VP is returned corresponding to the first FCR that matches the specified

criteria.

RENAME_FCR $01FC5C
rename_fcr(ref_num, pathname) .

Function: The name of the FCR referenced is changed to the name specified in the XY
registers.

SWAP_OUT $01FC34

swap_out(dev_num)

Function: =~ This routine moves 'offline’ any volume in the device specified (A volume is
offline if it's media is not currently in a device.). (Actually, al]l volumes with the
passed device number are marked offline; there should never be more than one
volume corresponding to a device number.) A volume associated with the
specified device which has no open files is deleted from the system.

GET_VCR $01FC60

get_vcr(index) : vp

Function: The system walks the VCR list returning a VP to the nth VCR. By calling this
routine with sequential accumulator values, the entire VCR list is walked.

GET_FCR ~ $01FC64

get_fcr(index) : vp

Function: The system walks the FCR list rerurning a VP to the nth FCR. By calling this
routine with sequential accumulator values, the entire FCR list is walked.

ge 14

é€& CONFIDENTIAL éé# Page 14
000234

GS/0S System Service Calls External ERS Version 0.11a01
GET_SYS_GBUF $01FC3C

Function:

Input:

Output:

Errors:

SYS_EXIT

Function:

Output:

Errors:

This call returns a pointer to a locked, 1Kby segment of memory which should
be used by an FST as the general purpose /O buffer. (The piece of memory
allocated for this buffer is selected at boot time to maximize its efficiency as a
device driver buffer, and therefore this is the only recommended use for this
picce of memory.) The contents of this buffer will not be preserved from call to
call since all FSTs share this buffer, though the buffer is guaranteed not to move
around from call to call.

None

X <- Pointer to 1K I/O buffer (low)
Y <- Pointer to 1K I/O buffer (high)

None

$01FC40
This is the normal return vector for an FST which was entered through its
application entry point via a call from SCM's call_fst routine. SYS_EXIT never
returns to the FST. This function processes the error code returned by the FST
and restores the D and S registers to the values they had before the FST was
called. Thus, the FST may abort processing without “unwindin g" the stack.

¢ =0, normal return from FST
¢ = 1, error return from FST

A = error code if c=1.
The processor must be in naﬁve mode (e=0).
None

None

éé& CONFIDENTIAL dé¢ Page 15
000239

GS/0OS System Service Calls External ERS Version 0.11a01
SYS DEATH $01FC44

Function:

Input:

Exit:

Message:

Immediately halts execution of GS/OS and calls the System Failure Manager in
the Miscellaneous Toolkit to display an error code and the return address of the
JSL instruction that called SYS_DEATH.

A--> Error code in low byte. Upper byte = $00.

Currently defined error codes:

$0001 Unclaimed interrupt

$000A Volume Control Record unusable

$000B File Control Record unusable

$000C Block zero allocated illegally

$000D Interrupt with I/O shadowing off

It doesn't exit. BANG BANG, your dead!!!

The error message has the following form:

GS/0S System Error

Address = $nnnnnn LC Bank = #n

Error code = $nnnn

Restart

$nnnnnn is the 3 byte return address pushed by the JSL 10 SYS_DEATH.

$n is the language card bank number (0 or 1) that was switched in when the
error occurred.

$nnnn is the error code passed in A.

The user must press RETURN or click on Restart to reboot the systern.

¢d€ CONFIDENTIAL €d ¢ Page 16
000236

GS/0S System Service Calls External ERS Version 0.11a01

SET_SYS_SPEED $01FC50
Input Parameters: A Register contains speed setting as follows:
$0000 = 1 mHz (Apple//GS Normal Speed)
$0001 = 2.6 mHz (Apple//GS Fast Speed)
$0002 = >2.6 mHz (Accelerated Speed)

30003
Settings from $0004 through $FFFF are not valid.

Not Speed Dependent (Accelerated Speed)

Qutput Parameters: A Register contains speed setting that was in effect prior to issuing
this system service call. :

This call is intended to provide hardware accelerators with a means of staying compatible with
device drivers that may have speed dependent software implementations. The device
dispatcher will obtain the device driver's speed class from the DIB and issue a call to this
system service call to set the system speed.

An accelerator card may intercept this vector and replace the system service call with it's own
routine in order to maintain compatibility with the operating system device drivers.

CACHE_LOCK $01FC54

Function: This routine will try to lock or unlock the specified block in the cache. To lock 2
- block, the drvr_enable word should have the hi-bit on. To unlock, the hi-bit
should be 0. '

Inputs: GS/0S direct page

Outputs: GS/OS direct page

Errors: ¢ = 0 means no error, the block is locked or unlocked

¢ = | means the block’s not in the cache
Notes: Input and output is passed to this routine by GS/QOS direct page and full native
mode is always assumed.

ge

¢éd¢é CONFIDENTIAL ééé Page 17
000237

GS/08 System Service Calls External ERS VYersion 9.11201
MOVE_INFO $01FC70

Function: This call ransfers a block of from a source buffer to a destination buffer. The
source buffer pointer, destination buffer pointer and number of bytes to transfer
are passed as input parameters to this routine via the stack. Source and

destination
buffers may be in the same or different banks. The source and/or the destination
buffer is allowed to straddle a bank boundary. Move_info can be used by device
drivers to transfer data from a single I[/O location to a buffer or from a buffer to a
single [/O location. The high byte of source, dest, and count must be zero. The
source and destination blocks must not overlap. This routine executes self
maodifying code on the stack and therefore is romable and it is reentrant!!! The
general move routine in this program is based on the one used by the memory
manager. It has been updated for GS/0OS purposes.

Calling sequence: '
Place machine in full native mode (e=0, m=0, x=0)
Push high order word of scurce pointer onto stack
Push low order word of source pointer

Push high order word of destination pointer

Push low corder word of destination pointer

Push high order word of transfer count

Push low order word of transfer count

. Push command byte

O ~J N W > R

Move Command Byte

15(14f13j12111{10{ 9187 j6|5]4]3]2{1}0

\ Source Incrementer

Destnadon Incrementer

Reserved
Move Mode
Reserved
bitsg 15/14 = reserved
bits 13/12/11 = move mode
= 000 =reserved
= 001 =hlock move
= 010-111 =reserved
bits 10/9/8/7 = reserved
bits 6/5/4 = reserved
bits 3/2 = destination incrementer
= 00 (+0) =constant destination
= 01 (+1) =increment destination by 1
= 10 (-1) =decrement destination by 1
= 11 =reserved
bits 1/0 = source incrementer
= 00 (+0) =gonstant source
= 01 (+1) =increment scurce by 1

ge 18

ddéd€ CONFIDENTIAL éd ¢ ls
5233

Pa
00

GS/0S System Service Calls External ERS Version 0.11a01

Predefined command bytes for the move_info routine.

moveblkand equ

50800 ;mcve block command

Most common command

move_sinc_dinc equ

S05+moveblkcmd ;source incs - destination incs

Less common commands

move_sinc_ddec equ
move_sdec_dingc equ
move sdec ddec equ

move_scen_dcon equ
move _sinc decon equ
move_sdec_dcon equ

move_scon_dinc equ
move_scon_ddec equ

9. jsl Move Info

Sample code

rep
pea
pea
pea
pea
pea
pea
pea
sl

S09+moveblkand :source incs - destination decs
S06+moveblkand ;source decs - destination incs
S0a+moveblkemd ;source decs - destination decs

500+meveblkeamd ;src constant ~ destination constan~
$01l+moveblkcmd ;source incs - destination constanr
$02+moveblkcmd :source decs - destinaticn constant

$04+moveblkend :source constant - destinaticn incs
$08+moveblkemnd :source constant - destinaticn cdecs

#3530

source pointer|-16 ;source pointer
source pointer

dest_pointer|-16 :;destination pointer
dest_pointer

count_length!-16 ;count length
count_length

move sinc _dinec ; command wora
move_ info
é8€ CONFIDENTIAL €d s Page 19

000239

GS/0S System Service Calls External ERS

Stack on Entry to Move_Info

Source Pointer

n Destination Pointer -

_ Transfer Count -
- Command Word -
B Return Address -

- Qutputs:
c= 0/l no error/error
data bank and direct register are preserved
a= error code
X, y= scrambled

dé€d CONFIDENTIAL dé ¢

Version 0.11a01

5+30e

s+30a

s+306

s+304

s+3501

Page 20

000240

GS/OS System Service Calls External ERS Version 0.11a01

CVT_0_TO_1 . $01FC74
Function: This call converts a class 0 string (a string with a length byte) into a class |
stming (a string with a length word). The source string pointer and
destination sting pointer are passed as

parameters on the stack. The source and destination string areas must
either be identical or else completely non-overlapping. However, the routine does
not check this.

Inputs: Longword Pointer to source string
Longword Pointer to destination string
SP ->
Outputs: The routine converts thc source string and places the resultat the location
pointed to by the destination string parameter. It squeezes input
parameters out of the stack ‘ before
rewrning,
Errors: None.
ééd CONFIDENTIAL dé & Page 21

000241

GS/0S System Service Calls External ERS VYersion 0.11a01

CVT_1_TO 0 $01FC78
Function: This call converts a class 1 string (a string with a length word) into a class 0
string (a string with a length byte). The source string pointer and
destination string pointer are passed as

parameters on the stack. The source and destination string areas must ‘
either be identical or else completely non-overlapping. However, the routine does

not check this.

Inputs: Longword Pointer to source string
Longword Pointer to destination string

SP->
Outputs: The routine converts the source string and places the result at the location
pointed to by the destination string parameter. It squeezes input
parameters out of the stack ' before
returning.
Errors: ¢=0 Conversion successful.

¢=1 Input string was too long to convert (i.e. more than 255 characters). In this
case, the input string is unchanged.

&€& CONFIDENTIAL €66 Pa

GS/0S System Service Calls External ERS Version 0.11a01
REPLACE_80 $01FC7C

Function: This call replaces all of the colons (ASCII $3A) in a class 1 input string with a
character specified by the caller. Typically, this routine is used to convert the
internal representartion of a pathname to an external representation in which /"
represents the separator. If the input string contains an occurrence of the
specified replacement character, this routine returns an error and leaves the

input 7 string as is.
Inputs: Longword Pointer to input string
Word Replacement character in low byte
SP->
Outputs: The input string is converted in place. The routine squeezes input parameters
out of the stack before returning.
Errors: c¢=0 Conversion successful.

c=1 Input string contained occurrences of the replacement character. In this
case, the input string is unchanged.

dd€ CONFIDENTIAL €& Page{}:ﬁé4 9

GS/0S System Service Calls External ERS Version 0.11a01
RESERVED 01 $01FCS80
Input: Unspecified

Output: Unspecified

Function: This system service call is reserved for use by Apple Computer, Inc. This

call provides a temporary function. Future versions of GS/OS most likely
will not support the function provided by this call.

RESERVED 02 - $01FC84

Input: Unspecified .
Qutput: Unspecified

Function: This system service call is reserved for use by Apple Computer, Inc. This
call provides a temporary function. Future versions of GS/OS most likely
will not support the function provided by this call.

SIGNAL $01FCS88
Function: This call signals the occurrence of a specific event and specifies the machine
- environment parameters to be used when executing the event handler for the
event.

Remainder of call description to be supplied when firm. See /nterrupt and Event
Management in GS/OS.

ddé CONFIDENTIAL éé¢ Page 24
pobzZ44

GS/0S System Service Calls Externzl ERS | ' Version 0.11a01

RESERVED 03 $01FCSC
Input: Unspecified
Output: Unspecified

Function: This system service call is reserved for use by Apple Computer, Inc. This
call provides a temporary function. Future versions of GS/OS most likely

will not support the function provided by this call.

déd€ CONFIDENTIAL dé ¢ Page 23
000245

GS/0OS System Service Calls External ERS Version 0.11a01

SET_DISKSW $01FC99
Input: The device number present on GS/OS direct page specifies which device will
' have it's dispatcher maintained disk switched status ser.

A Register: Unspecified

X Register: Unspecified

Y Register: Unspecified

Data Bank Register: Unspecified

Direct Page Register: Unspecified

P Register: =m=X

The ROM must not be switched in during this call.

Qutput: A Register: Unspecified
X Register: Unspecified
Y Register: ' Unspecified
Data Bank Register: Unchanged
Direct Page Register: Unchanged
P Register: O=e=m=x

Function: This system service call sets the device dispatcher maintained disk switched
error for the device specified by the value in the accumulator. This call supports
device drivers that implement device specific status calls which may detect either
an OFFLINE or DISKSWITCH condition. These conditions are returned as a
status rather than an error and will not be detected by the device dispatcher on
exit from the driver call. It is neccessary for the driver to specifically request that
the disk switched status be set in this situation. The SET_DISKSW call will in
turn call both SWAP_OUT and DEL_CACHE_VOL if the device dispatcher
maintained disk switched error was not previously set.

NOTE: If the current device is a linked device, then SET_DISKSW call will in
turn call both SWAP_OUT and DEL._CACHE_VOL for each of the linked devices
starting with the head link device and proceeding through each forward linked
device until reaching the end of the forward linked list. Disk switch maintenance

is only performed for a device if the device dispatcher maintained disk switched
error for that device was not previously set.

RESERVED 04 $01FC94
This system service call is reserved for use by Apple Computer, Inc.
RESERVED _05 $01FC98
This system service call is reserved for use by Apple Computer, Inc.
RESERVED_06 $O01FCIC

This system service call is reserved for use by Apple Computer, Inc.

dd¥d CONFIDENTIAL dd ¢ Pave 26
005246

GS/0S System Service Calls External ERS Version 0.11a01
$01FCA0Q

RESERVED 07

This system service call is reserved for use by Apple Computer, Inc.

Page 27

é€8 CONFIDENTIAL dd¢
0060247

GS/0S System Service Calls External ERS Version 9.11a01
SUP_DRVR_DISP $01FCA4

This system service call is the main entry point in the supervisory driver dispatcher.
Supervisory drivers provide an interface for higher level device drivers to access
hardware. Supervisory driver calls can be classified into one of two groups.
Calls with a supervisory driver number of zero are calls to the supervisory
dispatcher and will not be passed on to a supervisory driver. Calls with a
supervisory driver number of nonzero will be passed on to the supervisory
driver specified by the supervisory driver number.

The following calls must are supported by the supervisory dispatcher and will not be passed
on to a supervisory driver.

Driver Number Call Number Eunction
$0000 $0600 Return driver number for ID 'n’
$0000 $0001 Set SIB pointer
$0000 $0002 - $FFFF Reserved
Get S isor Driver Num!
Call Input Parameters: A Reg: Supervisor Driver Number = 30000
: X Reg: Supervisor Call Number = 30000
Y Reg: Supervisor ID Number = $XXXX
DirectPage: SIB Pointer
Call Output Parameters: A Reg: Error Code
- X Reg: Supervisory driver number

Supervisor Call Number: This word parameter specifies which type of call is to be issued 1o
the supervisory driver. :

Supervisor Driver Number: This word parameter is returned as output from this call
and indicates the device number of the supervisory driver indicated
by the supervisor ID number passed as an input.

SIB Pointer: This longword points to the supervisor information block for the
supervisory driver being accessed. This parameter is set up by the
supervisory driver dispatcher.

This call is issued by a device driver to determine what supervisory driver number should be
used in calling the supervisory driver associated with that device driver. This call is handled
by the supervisory device dispatcher and does not result in any execution of a supervisory
driver. The device driver passes to the supervisor driver dispatcher during it's startup call, the
supervisor ID number for the supervisory driver that it wishes to use. The supervisor driver
dispatcher will return the driver number that indicates the supervisory drivers position in the
supervisory driver list. This number is passed by the device driver to the supervisory driver
dispatcher on all subsequent calls to the supervisory driver. Note that if the supervisory
driver dispatcher cannot find a supervisor driver for the supervisory driver ID number passed
by the device driver than an error "no device" will be returned. In this case the device driver
will not be able to use the supervisory driver and should return an error during it's startup call.

dé& CONFIDENTIAL é¢é¢ Page 28
000248

GS/OS System Service Calls External ERS : Version 0.11a01

éd8 CONFIDENTIAL #d¢ Page 29
000249

GS/0S System Service Calls External ERS Version 0.11a01
Set SIB Pointer

Call Input Parameters: A Reg: Supervisor Driver Number = 30000
- X Reg: Supervisor Call Number = 30001
Y Reg: Supervisor Number to set SIB pointer
DirectPage: SIB Pointer
Call Qutput Parameters: A Reg: Ermror Code
X Reg: Supervisory driver nurnber

Supervisor Call Number: This word parameter specifies which type of call is to be issued 10
the supervisory driver.

Supervisor Driver Number: This word parameter is returned as output from this call
and indicates the device number of the supervisory driver indicated
by the supervisor ID number passed as an input.

SIB Pointer: This longword points to the supervisor information block for the
supervisory driver being accessed. This parameter is set up by the
supervisory driver dispatcher.

This call is may be issued to set the SIB pointer on G5/0S direct page to the SIB specified by
the supervisory driver number passed as input in the Y register.

ddd¢ CONFIDENTIAL ds¢ Page 30
605230

GS/OS System Service Calls External ERS Version 9.11a01

SUPERVISOR STARTUP
Call Input Parameters: A Reg: Supervisor Driver Number = 30000

X Reg: Supervisor Call Number = 30000
DirectPage: SIB Pointer

Call Qutput Parameters: A Reg: - Error Code

Supervisor Call Number: This word parameter specifies which type of call is to be issued 1o
the supervisory driver.

Supervisor Driver Number: This word parameter specifies which supervisory driver
1s to be started.

SIB Pointer: This longword points to the supervisor information block for the
supervisory driver being accessed. This parameter is set up by the
supervisory driver dispatcher.

This call is responsible to prepare the supervisory driver for use by device drivers. Any
system resources required by the supervisory driver, such as memory, should be allocated
during this call. If the supervisor cannot allocate resources neccessary to support and device
driver calls then the supervisory driver should return an error. If a supervisory driver returns
an error as a result of the startup call then the supervisory driver will be purged from the
supervisory driver list.

éd& CONFIDENTIAL déé Page 31
0808251

GS/0S System Service Calis External ERS Version 0.11a01
SUPERVISOR SHUTDOWN
Call Input Parameters: A Reg: Supervisor Driver Number = 30000

X Reg: Supervisor Call Number = 30001
DirectPage: SIB Pointer

Call Ourp}.ue Parameters: A Reg: Error Code

Supervisor Call Number: This word parameter specifies which type of call is to be issued to
the supervisory driver.

Supervisor Driver Number: This word parameter specifies which supervisory driver
is to be started.

SIB Pointer: This longword points to the supervisor information block for the
supervisory driver being accessed. This parameter is set up by the
. supervisory driver dispatcher.

This call is responsible for releasing any system resources acquired during startup of the
supervisory driver. Supervisory drivers are shutdown after all device drivers have been

shutdown.

dé¢ CONFIDENTIAL dé¢

e
TAM)

GS/0S System Service Calls External ERS Version 0.11a01

Driver/Supervisor Specific Call

Call Input Parameters: = A Reg: Supervisor. Driver Number # $0000
X Reg: Supervisor Call Number = %0002

SFFFF
' DirectPage: SIB Pointer

Call Ourp.u: Parameters: A Reg: Error Code

Supervisor Call Number: This word parameter specifies which type of cull is to be issued to
the supervisory driver.

Supervisor Driver Number: This word parameter is returned as output from this cail
and indicates the device number of the supervisory driver indicated
by the supervisor ID number passed as an inpur

SIB Pointer: . This longword points to the supervisor information block for the
supervisory driver being accessed. This parameter is set up by the
supervisory driver dispatcher.

These calls are used by device drivers to request specific tasks to be completed by the
supervisory driver. These calls are designed to accommodate the needs of all device drivers

using a specific supervisory driver.

dé§ CONFIDENTIAL éé & Page 33
080253

GS/0S System Service Calls External ERS Version 0.11a01
INSTALL_DRIVER $01FCAS

In order 1o support removable partitionable media on block devices it is neccessary to be able
to dynamically install devices in the device list as new partitions come online. A ¢a”
'INSTALL_DRIVER' has been provided for this purpose. Note that this call implies that .
GS/OS device list can grow. There is no mechanism that can cause devices to be remaoved
from the device list.

Call Input Parameters: X Reg: DIB Address {(low word)
Y Reg: DIB Address (high word)
Call Qutput Parameters: A Reg: Error Code
DIB Address: This longword specifies the address of a list of device information

blocks to be installed into the device list. The first longword in this
list specifies the number of device information blocks to be
installed. This is followed by a longword pointer to a device
‘information block for each DIB to be installed.

This call is used to dynamically install a list of drivers into the device list. This call does not
install the driver immediately, rather it informs the device dispatcher that the drivers are to be
installed. The device disparcher will attempt to install the drivers at the end of the current
device call if a device call is in progress or at the end of the next device call if no device call is
in progress. When arntempting to install drivers via this system service call error parsing is
absolutely required. Two possible errors may be returned from this call. If an out of memory
error is refurned then it will not be possible to install any drivers. If however a driver busy
error is returned then a post driver install is already pending. In this case the driver
installation call must be deferred untl then next access to the device driver which is installing
additional devices.

When installing the driver, the device dispatcher will insert the device into the device list and
issue a startup call to the device. If space cannot be allocated in the device list for the new
device or if the device returns an error as a result of the startup call then the device will not be
installed into the device list.

Note that there is no indication to an application that the device list has changed size.
Applications that scan block devices (such as the Finder) should issue a D_INFO call with a
pcount of $0003 to get the device's characteristics. If the device is a block device with
removable media then a status call should be issued to the device. This scan operation should
always begin with device $0001 and continue up the device list until a device not found error
occurs. If applications scan devices in this manner dynamically installed devices will always
be included in the scan operation.

éd& CONFIDENTIAL ddd Page 34
600254

GS/0S System Service Calls External ERS Version 0.11a01

GET_BOOT_PFX $01FCAC
This call retwns a pointer to the boot volume name.
Call Input Parameters: none

Call Output Parameters: X Reg: Low part of pointer to GString of boot volume name
Y Reg: High part of pointer to GString of boot volume name

No errors can be returned on this call.

SET_BOOT_PFX | $01FCBO

This call allows the changing of the boot prefix. GQuit is updated with the new information
provided by this call.

Call Input Parameters: X Reg: Low part of pointer to GSuing of boot volume name
Y Reg: High part of pointer to GString of boot volume name

Call Output Parameters: none

Memory manager errors can be returned on this call if memory is unavailable.

déd€ CONFIDENTIAL dd ¢

GS/0S System Service Calls External ERS Version 0.11a01
DYN_SLOT_ARBITER $01FCBC

In order to support both internal and external slots in the future, a mechanism must be in place
to dynamically select an internal or external slot. This task must include swapping in any
screen hole memory associated with any given slot. The slot arbiter provides this mechanisg
by maintaining an image if each internal and external slot's screen hole memory locations
(including slot zero screen holes associated with any given slot).

Call Input Parameters: A Reg: Requested slot
X Reg: Undefined
Y Reg: Undefined

Call Output Parameters: Carry Flag: Cleared if requested slot was granted.
Set if requested slot was denied.

Requested Slot: This word specifies the slot to be requested where bits 0 throu gh2
indicate the slot number and bit 3 indicates that the requested slot
is external or internal. Bit 3 will be set for external slots. All other
bits in the requested slot must be zero.

NOTE: No dynamic slot arbitration has been implemented at this time. The current
implementation merely checks if the requested slot has been selecred by examining
SLTROMSEL or RDC3ROM. If the requested slot is not currently selected then the request
will be denied. A full implementation of the slot arbiter can be expected at a future date. Hang
in there!!!

ddd CONFIDENTIAL édd Page 36
0606256

